《数学大帝》免费阅读!

第一百四十四章 贝叶斯定理(2/2)

作者:蔡泽禹

由richardprice整理发表了贝叶斯的成果《anessaytowardssolvingaprobleminthedoctrineofchances》,提出贝叶斯公式。

    假定b1,b2,……是某个过程的若干可能的前提,则p(bi)是人们事先对各前提条件出现可能性大小的估计,称之为验前概率;如果这个过程得到了一个结果a,那么贝叶斯公式提供了我们根据a的出现而对前提条件做出新评价的方法;p(biia)既是对前提bi的出现概率的重新认识,称p(biia)为验后概率’经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。

    贝叶斯定理是关于随机事件a和b的条件概率(或边缘概率)的一则定理。其中p(a|b)是在b发生的情况下a发生的可能性。

    贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1761)曾提出计算条件概率的公式用来解决如下一类问题:假设h[1],h[2]…,h[n]互斥且构成一个完全事件,已知它们的概率p(h[i]),i=1,2,…,n,现观察到某事件a与h[1],h[2]…,h[n]相伴随机出现,且已知条件概率p(a|h[i]),求p(h[i]|a)。
小说分类