赛尔和格雷先把谱序列的很多个例子都列举出来,对其感悟之后,就可以尝试规范的使用在同伦群上。
最终研究同伦群,就可以对各种各样的同伦群都变成了一个个序列号,也就是对应成了一个个密码,这些密码就是同伦群结构的骨头,同伦群的变化和组合也就是这些密码直接的变化和运算。这样,一个抽象复杂的问题就变成了简单的运算了,岂不妙哉!
赛尔和格雷最终把很多正合列的单元找出来,直接标出对应的符号或者数字,规范了这个谱的用法,让正合列直接变得一目了然。
最后塞尔用勒雷的谱序列计算了代数拓扑中球面的同伦群,用层论写下了代数几何名篇gaga,将复分析系统地引入代数几何。