一必要条件,并没有意识到流形本身稳定的重要性。
在较特殊的复二维情形,有一些存在性结果,但萧荫堂一直认为,这些结果并不完备,至今也还没有完整的结果。此后近30年,田刚一直沿着丘成桐猜想所指出的研究方向不懈努力,试图理解正曲率条件下,稳定性与kahler-einstein度量的存在性如何相关,他用福复不变量定义了一个解析稳定性的概念,称为k-稳定性,并取得了一些进展。然而这个问题的真正突破来自于唐纳森,他在2001年证明了如果卡勒流形上的卡勒类中存在一个常数量曲率的度量,并且其自同构群是离散的,那么这个流形就是在代数几何意义下是稳定的。唐纳森所用的关健工具恰好是丘成桐考虑过的伯格曼核的逼近方法,他敏锐地观察到伯格曼核渐进展开的第二项正是数量曲率,如果它为常数,则相应的偏微分方程便可解。